Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38659937

RESUMO

Human induced pluripotent stem cells (hiPSCs) are frequently used to study disease-associated variations. We characterized transcriptional variability from a hiPSC-derived cardiomyocyte (hiPSC-CM) study of left ventricular hypertrophy (LVH) using donor samples from the HyperGEN study. Multiple hiPSC-CM differentiations over reprogramming events (iPSC generation) across 7 donors were used to assess variabilities from reprogramming, differentiation, and donor LVH status. Variability arising from pathological alterations was assessed using a cardiac stimulant applied to the hiPSC-CMs to trigger hypertrophic responses. We found that for most genes (73.3%~85.5%), technical variability was smaller than biological variability. Further, we identified and characterized lists of "noise" genes showing greater technical variability and "signal" genes showing greater biological variability. Together, they support a "genetic robustness" hypothesis of disease-modeling whereby cellular response to relevant stimuli in hiPSC-derived somatic cells from diseased donors tends to show more transcriptional variability. Our findings suggest that hiPSC-CMs can provide a valid model for cardiac hypertrophy and distinguish between technical and disease-relevant transcriptional changes.

2.
Toxicol Sci ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547396

RESUMO

Many oncology drugs have been found to induce cardiotoxicity in a subset of patients, which significantly limits their clinical use and impedes the benefit of lifesaving anti-cancer treatments. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carry donor-specific genetic information and have been proposed for exploring the inter-individual difference in oncology drug-induced cardiotoxicity. Herein, we evaluated the inter- and intra- individual variability of iPSC-CM-related assays and presented a proof of concept to prospectively predict doxorubicin (DOX)-induced cardiotoxicity (DIC) using donor-specific iPSC-CMs. Our findings demonstrated that donor-specific iPSC-CMs exhibited greater line-to-line variability than the intra-individual variability in impedance cytotoxicity and transcriptome assays. The variable and dose-dependent cytotoxic responses of iPSC-CMs resembled those observed in clinical practice, and largely replicated the reported mechanisms. By categorizing iPSC-CMs into resistant and sensitive cell lines based on their time- and concentration-related phenotypic responses to DOX, we found that the sensitivity of donor-specific iPSC-CMs to DOX may predict in vivo DIC risk. Furthermore, we identified a differentially expressed gene, DND microRNA-mediated repression inhibitor 1 (DND1), between the DOX-resistant and DOX-sensitive iPSC-CMs. Our results support the utilization of donor-specific iPSC-CMs in assessing inter-individual difference in DIC. Further studies will encompass a large panel of donor-specific iPSC-CMs to identify potential novel molecular and genetic biomarkers for predicting DOX and other oncology drug-induced cardiotoxicity.

3.
Mol Ther Methods Clin Dev ; 28: 190-207, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36700123

RESUMO

Viral replication places oncolytic viruses (OVs) in a unique niche in the field of drug pharmacokinetics (PK) as their self-amplification obscures exposure-response relationships. Moreover, standard bioanalytical techniques are unable to distinguish the input from replicated drug products. Here, we combine two novel approaches to characterize PK and biodistribution (BD) after systemic administration of vesicular stomatitis virus pseudotyped with lymphocytic choriomeningitis virus glycoprotein (VSV-GP) in healthy mice. First: to decouple input drug PK/BD versus replication PK/BD, we developed and fully characterized a replication-incompetent tool virus that retained all other critical attributes of the drug. We used this approach to quantify replication in blood and tissues and to determine its impact on PK and BD. Second: to discriminate the genomic and antigenomic viral RNA strands contributing to replication dynamics in tissues, we developed an in situ hybridization method using strand-specific probes and assessed their spatiotemporal distribution in tissues. This latter approach demonstrated that distribution, transcription, and replication localized to tissue-resident macrophages, indicating their role in PK and BD. Ultimately, our study results in a refined PK/BD profile for a replicating OV, new proposed PK parameters, and deeper understanding of OV PK/BD using unique approaches that could be applied to other replicating vectors.

4.
Front Genet ; 12: 588452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679876

RESUMO

Background: Indices of left ventricular (LV) structure and geometry represent useful intermediate phenotypes related to LV hypertrophy (LVH), a predictor of cardiovascular (CV) disease (CVD) outcomes. Methods and Results: We conducted an exome-wide association study of LV mass (LVM) adjusted to height2.7, LV internal diastolic dimension (LVIDD), and relative wall thickness (RWT) among 1,364 participants of African ancestry (AAs) in the Hypertension Genetic Epidemiology Network (HyperGEN). Both single-variant and gene-based sequence kernel association tests were performed to examine whether common and rare coding variants contribute to variation in echocardiographic traits in AAs. We then used a data-driven procedure to prioritize and select genes for functional validation using a human induced pluripotent stem cell cardiomyocyte (hiPSC-CM) model. Three genes [myosin VIIA and Rab interacting protein (MYRIP), trafficking protein particle complex 11 (TRAPPC11), and solute carrier family 27 member 6 (SLC27A6)] were prioritized based on statistical significance, variant functional annotations, gene expression in the hiPSC-CM model, and prior biological evidence and were subsequently knocked down in the hiPSC-CM model. Expression profiling of hypertrophic gene markers in the knockdowns suggested a decrease in hypertrophic expression profiles. MYRIP knockdowns showed a significant decrease in atrial natriuretic factor (NPPA) and brain natriuretic peptide (NPPB) expression. Knockdowns of the heart long chain fatty acid (FA) transporter SLC27A6 resulted in downregulated caveolin 3 (CAV3) expression, which has been linked to hypertrophic phenotypes in animal models. Finally, TRAPPC11 knockdown was linked to deficient calcium handling. Conclusions: The three genes are biologically plausible candidates that provide new insight to hypertrophic pathways.

5.
Am J Physiol Heart Circ Physiol ; 320(3): H954-H968, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416449

RESUMO

Exosomes are an important mechanism of cell-cell interaction in the cardiovascular system, both in maintaining homeostasis and in stress response. Interindividual differences that alter content in exosomes may play a role in cardiovascular disease pathology. To study the effect of interindividual cardiomyocyte (CM) variation, we characterized exosomal content in phenotypically diverse human induced pluripotent stem cell-derived CMs (hiPSC-CMs). Cell lines were generated from six participants in the HyperGEN cohort: three with left ventricular hypertrophy (LVH) and three with normal left ventricular mass (LVM). Sequence analysis of the intracellular and exosomal RNA populations showed distinct expression pattern differences between hiPSC-CM lines derived from individuals with LVH and those with normal LVM. Functional analysis of hiPSC-endothelial cells (hiPSC-ECs) treated with exosomes from both hiPSC-CM groups showed significant variation in response, including differences in tube formation, migration, and proliferation. Overall, treatment of hiPSC-ECs with exosomes resulted in significant expression changes associated with angiogenesis and endothelial cell vasculogenesis. However, the hiPSC-ECs treated with exosomes from the LVH-affected donors exhibited significantly increased proliferation but decreased tube formation and migration, suggesting angiogenic dysregulation.NEW & NOTEWORTHY The intracellular RNA and the miRNA content in exosomes are significantly different in hiPSC-CMs derived from LVH-affected individuals compared with those from unaffected individuals. Treatment of endothelial cells with these exosomes functionally affects cellular phenotypes in a donor-specific manner. These findings provide novel insight into underlying mechanisms of hypertrophic cell signaling between different cell types. With a growing interest in stem cells and exosomes for cardiovascular therapeutic use, this also provides information important for regenerative medicine.


Assuntos
Diferenciação Celular , Exossomos/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Doadores de Tecidos , Adulto , Idoso , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Exossomos/genética , Exossomos/ultraestrutura , Feminino , Regulação da Expressão Gênica , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Miócitos Cardíacos/ultraestrutura , Neovascularização Fisiológica/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcriptoma
6.
Mol Ther Nucleic Acids ; 5(8): e342, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27483025

RESUMO

Short interfering RNAs (siRNAs) are a valuable tool for gene silencing with applications in both target validation and therapeutics. Many advances have recently been made to improve potency and specificity, and reduce toxicity and immunostimulation. However, siRNA delivery to a variety of tissues remains an obstacle for this technology. To date, siRNA delivery to muscle has only been achieved by local administration or by methods with limited potential use in the clinic. We report systemic delivery of a highly chemically modified cholesterol-conjugated siRNA targeting muscle-specific gene myostatin (Mstn) to a full range of muscles in mice. Following a single intravenous injection, we observe 85-95% knockdown of Mstn mRNA in skeletal muscle and >65% reduction in circulating Mstn protein sustained for >21 days. This level of Mstn knockdown is also accompanied by a functional effect on skeletal muscle, with animals showing an increase in muscle mass, size, and strength. The cholesterol-conjugated siRNA platform described here could have major implications for treatment of a variety of muscle disorders, including muscular atrophic diseases, muscular dystrophy, and type II diabetes.

7.
BMC Genomics ; 16: 1069, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26673413

RESUMO

BACKGROUND: Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeq Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitations of RNA-seq. To assess the performance of this new methodology, we performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation sequencing platforms (Illumina HiSeq and Ion Torrent Proton). We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). RESULTS: Using published data from two standard RNA reference samples, we observed a strong concordance of log2 fold change for all genes when comparing AmpliSeq to Illumina HiSeq (Pearson's r = 0.92) and Ion Torrent Proton (Pearson's r = 0.92). We used ROC, Matthew's correlation coefficient and RMSD to determine the overall performance characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods. When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global gene expression patterns consistent with known sources of variations. CONCLUSIONS: Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene expression analysis and mRNA marker screening with high accuracy.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Transcriptoma , Análise por Conglomerados , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos
8.
PLoS One ; 9(9): e108051, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25255322

RESUMO

Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. Here we utilize a previously established in vitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We perform miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1 stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. A principal component analysis approach comparing the in vitro data with human myocardial biopsies detected overlapping expression changes between the in vitro samples and myocardial biopsies with Left Ventricular Hypertrophy. These results provide further insights into the complex RNA regulatory mechanism associated with cardiac hypertrophy.


Assuntos
Cardiomegalia/patologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
9.
J Invest Dermatol ; 133(3): 677-684, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23096700

RESUMO

PHACE syndrome is the association of large segmental facial hemangiomas and congenital anomalies, such as posterior fossa malformations, cerebral arterial anomalies, coarctation of the aorta, eye anomalies, and sternal defects. To date, the reported cases of PHACE syndrome have been sporadic, suggesting that PHACE may have a complex pathogenesis. We report here genomic copy number variation (CNV) analysis of 98 individuals with PHACE syndrome as a first step in deciphering a potential genetic basis of PHACE syndrome. A total of 3,772 CNVs (2,507 duplications and 1,265 deletions) were detected in 98 individuals with PHACE syndrome. CNVs were then eliminated if they failed to meet established criteria for quality, spanned centromeres, or did not contain genes. CNVs were defined as "rare" if not documented in the database of genomic variants. Ten rare CNVs were discovered (size range: 134-406 kb), located at 1q32.1, 1q43, 3q26.32-3q26.33, 3p11.1, 7q33, 10q24.32, 12q24.13, 17q11.2, 18p11.31, and Xq28. There were no rare CNV events that occurred in more than one subject. Therefore, further study is needed to determine the significance of these CNVs in the pathogenesis of PHACE syndrome.


Assuntos
Coartação Aórtica/genética , Variações do Número de Cópias de DNA/genética , DNA/genética , Anormalidades do Olho/genética , Síndromes Neurocutâneas/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Técnicas de Genotipagem , Humanos , Lactente , Masculino , Reprodutibilidade dos Testes , Transdução de Sinais , Adulto Jovem
10.
J Histochem Cytochem ; 59(8): 727-40, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21804077

RESUMO

Chemically stabilized small interfering RNA (siRNA) can be delivered systemically by intravenous injection of lipid nanoparticles (LNPs) in rodents and primates. The biodistribution and kinetics of LNP-siRNA delivery in mice at organ and cellular resolution have been studied using immunofluorescence (IF) staining and quantitative polymerase chain reaction (qPCR). At 0.5 and 2 hr post tail vein injection of Cy5-labeled siRNA encapsulated in LNP, the organ rank-order of siRNA levels is liver > spleen > kidney, with only negligible accumulation in duodenum, lung, heart, and brain. Similar conclusions were drawn by using qPCR to measure tissue siRNA levels as a secondary end point. siRNA levels in these tissues decreased by more than 10-fold after 24 hr. Within the liver, LNPs delivered siRNA to hepatocytes, Kupffer cells, and sinusoids in a time-dependent manner, as revealed by IF staining and signal quantitation methods established using OPERA/Columbus software. siRNA first accumulated in liver sinusoids and trafficked to hepatocytes by 2 hr post dose, corresponding to the onset of target mRNA silencing. Fluorescence in situ hybridization methods were used to detect both strands of siRNA in fixed tissues. Collectively, the authors have implemented a platform to evaluate biodistribution of siRNA across cell types and across tissues in vivo, with the objective of elucidating the pharmacokinetic and pharmacodynamic relationship to guide optimization of delivery vehicles.


Assuntos
Autoantígenos/metabolismo , Lipídeos , Nanopartículas , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Autoantígenos/genética , Portadores de Fármacos , Imunofluorescência , Técnicas de Silenciamento de Genes , Hibridização in Situ Fluorescente , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , Ribonucleoproteínas/genética , Distribuição Tecidual
11.
Mol Ther ; 18(9): 1657-66, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20628357

RESUMO

Mouse models with liver-specific expression of firefly luciferase were developed that enable a noninvasive and longitudinal assessment of small-interfering RNA (siRNA)-mediated gene silencing in hepatocytes of live animals via bioluminescence imaging. Using these models, a set of lipid nanoparticles (LNPs) with different compositions of cationic lipids, polyethylene glycol (PEG), and cholesterol, were tested for their abilities in delivering a luciferase siRNA to the liver via systemic administration. A dose-dependent luciferase knockdown by LNP/siRNA assemblies was measured by in vivo bioluminescence imaging, which correlated well with the results from parallel ex vivo analyses of luciferase mRNA and protein levels in the liver. RNA interference (RNAi)-mediated target silencing was further confirmed by the detection of RNAi-specific target mRNA cleavage. A single dose of LNP02L at 3 mg/kg (siRNA) caused 90% reduction of luciferase expression and the target repression lasted for at least 10 days. With identical components, LNPs containing 2% PEG are more potent than those with 5.4% PEG. Our results demonstrate that these liver-luciferase mouse models provide a powerful tool for a high-throughput evaluation of hepatic delivery platforms by noninvasive imaging and that the molar ratio of PEG lipid can affect the efficacy of LNPs in silencing liver targets via systemic administration.


Assuntos
Lipídeos/química , Fígado/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Imunofluorescência , Inativação Gênica/fisiologia , Fígado/enzimologia , Luciferases/genética , Camundongos
12.
PLoS One ; 4(9): e7194, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19787052

RESUMO

Many Streptomyces strains are known to produce valinomycin (VLM) antibiotic and the VLM biosynthetic gene cluster (vlm) has been characterized in two independent isolates. Here we report the phylogenetic relationships of these strains using both parsimony and likelihood methods, and discuss whether the vlm gene cluster shows evidence of horizontal transmission common in natural product biosynthetic genes. Eight Streptomyces strains from around the world were obtained and sequenced for three regions of the two large nonribosomal peptide synthetase genes (vlm1 and vlm2) involved in VLM biosynthesis. The DNA sequences representing the vlm gene cluster are highly conserved among all eight environmental strains. The geographic distribution pattern of these strains and the strict congruence between the trees of the two vlm genes and the housekeeping genes, 16S rDNA and trpB, suggest vertical transmission of the vlm gene cluster in Streptomyces with no evidence of horizontal gene transfer. We also explored the relationship of the sequence of vlm genes to that of the cereulide biosynthetic genes (ces) found in Bacillus cereus and found them highly divergent from each other at DNA level (genetic distance values >or= 95.6%). It is possible that the vlm gene cluster and the ces gene cluster may share a relatively distant common ancestor but these two gene clusters have since evolved independently.


Assuntos
Antibacterianos/metabolismo , Família Multigênica , Streptomyces/genética , Streptomyces/metabolismo , Valinomicina/metabolismo , Antibacterianos/química , Bacillus cereus/metabolismo , Teorema de Bayes , Evolução Biológica , Ecologia , Transferência Genética Horizontal , Funções Verossimilhança , Peptídeo Sintases/metabolismo , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Valinomicina/química
13.
Appl Environ Microbiol ; 73(11): 3460-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17400765

RESUMO

A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.


Assuntos
Chromobacterium/genética , Depsipeptídeos/biossíntese , Depsipeptídeos/genética , Redes e Vias Metabólicas/genética , Família Multigênica , Chromobacterium/metabolismo , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Dissulfetos/metabolismo , Deleção de Genes , Genes Bacterianos , Dados de Sequência Molecular , Estrutura Molecular , Oxirredução , Oxirredutases/genética , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Análise de Sequência de DNA
14.
J Biol Chem ; 281(22): 15064-72, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16574664

RESUMO

Glutamate dehydrogenase (GDH) plays an important role in insulin secretion as evidenced in children by gain of function mutations of this enzyme that cause a hyperinsulinism-hyperammonemia syndrome (GDH-HI) and sensitize beta-cells to leucine stimulation. GDH transgenic mice were generated to express the human GDH-HI H454Y mutation and human wild-type GDH in islets driven by the rat insulin promoter. H454Y transgene expression was confirmed by increased GDH enzyme activity in islets and decreased sensitivity to GTP inhibition. The H454Y GDH transgenic mice had hypoglycemia with normal growth rates. H454Y GDH transgenic islets were more sensitive to leucine- and glutamine-stimulated insulin secretion but had decreased response to glucose stimulation. The fluxes via GDH and glutaminase were measured by tracing 15N flux from [2-15N]glutamine. The H454Y transgene in islets had higher insulin secretion in response to glutamine alone and had 2-fold greater GDH flux. High glucose inhibited both glutaminase and GDH flux, and leucine could not override this inhibition. 15NH4Cl tracing studies showed 15N was not incorporated into glutamate in either H454Y transgenic or normal islets. In conclusion, we generated a GDH-HI disease mouse model that has a hypoglycemia phenotype and confirmed that the mutation of H454Y is disease causing. Stimulation of insulin release by the H454Y GDH mutation or by leucine activation is associated with increased oxidative deamination of glutamate via GDH. This study suggests that GDH functions predominantly in the direction of glutamate oxidation rather than glutamate synthesis in mouse islets and that this flux is tightly controlled by glucose.


Assuntos
Glutamato Desidrogenase/genética , Insulina/metabolismo , Mutação , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Glucose/farmacologia , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/metabolismo , Glutamina/farmacologia , Guanosina Trifosfato/farmacologia , Humanos , Hiperinsulinismo/enzimologia , Hiperinsulinismo/genética , Hiperinsulinismo/fisiopatologia , Técnicas In Vitro , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/metabolismo , Cinética , Leucina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
J Biol Chem ; 279(14): 13393-401, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-14736887

RESUMO

Children with hypoglycemia due to recessive loss of function mutations of the beta-cell ATP-sensitive potassium (K(ATP)) channel can develop hypoglycemia in response to protein feeding. We hypothesized that amino acids might stimulate insulin secretion by unknown mechanisms, because the K(ATP) channel-dependent pathway of insulin secretion is defective. We therefore investigated the effects of amino acids on insulin secretion and intracellular calcium in islets from normal and sulfonylurea receptor 1 knockout (SUR1-/-) mice. Even though SUR1-/- mice are euglycemic, their islets are considered a suitable model for studies of the human genetic defect. SUR1-/- islets, but not normal islets, released insulin in response to an amino acid mixture ramp. This response to amino acids was decreased by 60% when glutamine was omitted. Insulin release by SUR1-/- islets was also stimulated by a ramp of glutamine alone. Glutamine was more potent than leucine or dimethyl glutamate. Basal intracellular calcium was elevated in SUR1-/- islets and was increased further by glutamine. In normal islets, methionine sulfoximine, a glutamine synthetase inhibitor, suppressed insulin release in response to a glucose ramp. This inhibition was reversed by glutamine or by 6-diazo-5-oxo-l-norleucine, a non-metabolizable glutamine analogue. High glucose doubled glutamine levels of islets. Methionine sulfoximine inhibition of glucose stimulated insulin secretion was associated with accumulation of glutamate and aspartate. We hypothesize that glutamine plays a critical role as a signaling molecule in amino acid- and glucose-stimulated insulin secretion, and that beta-cell depolarization and subsequent intracellular calcium elevation are required for this glutamine effect to occur.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Glutamina/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transdução de Sinais/fisiologia , Cloreto de Amônio/farmacocinética , Animais , Cálcio/metabolismo , Glutamina/metabolismo , Glibureto/farmacologia , Hipoglicemiantes/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Isótopos de Nitrogênio , Canais de Potássio Corretores do Fluxo de Internalização , Receptores de Droga , Transdução de Sinais/efeitos dos fármacos , Receptores de Sulfonilureias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...